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Abstract

The success of machine learning algorithms
heavily relies on the quality of samples and the
accuracy of their corresponding labels. How-
ever, building and maintaining large, high-
quality datasets is an enormous task. This is es-
pecially true for biomedical data and for meta-
sets that are compiled from smaller ones, as
variations in image quality, labeling, reports,
and archiving can lead to errors, inconsisten-
cies, and repeated samples. Here, we show
that neighbor embedding algorithms can find
these anomalies, essentially by forming inde-
pendent clusters that are distinct from the main
(“good”) data but similar to other points with
the same error type. As a representative ex-
ample, we apply UMAP to discover outliers in
the publicly available ChestX-ray14, CheXpert,
and MURA datasets. While the results are
archival and retrospective, and focus on radi-
ological images, the graph-based methods work
for any data type and will prove equally benefi-
cial for curation at the time of dataset creation.
Keywords: neighbor embedding, UMAP,
dataset curation, data visualization, represen-
tation learning, unsupervised learning

1. Introduction

A prominent reason behind the current success of ma-
chine learning-based disease detection is the availabil-
ity of large medical datasets. However, for the ma-
chine learning models to be reliable, quality datasets
representative of the target population need to be en-
sured (Yu et al., 2018). The labels in these datasets
are often generated from human annotations using
automated extraction or entity detection tools. How-
ever, these annotations (and their archiving) can have
errors due to faulty perceptions and interpretations.
Even if the error rate of the annotator is less than
4%, this can lead to millions of annotation errors per
year (Bruno et al., 2015). Despite having a structured

© 2023 M.T. Islam & J.W. Fleischer.

MTISLAM@PRINCETON.EDU
JASONF@PRINCETON.EDU

way of evaluating medical images, human errors are
still inevitable (Waite et al., 2017). Thus, there needs
to be a better way to identify such errors before they
are included in a dataset.

For images, the search can be performed visu-
ally. However, examining individual images is a
daunting task that requires many human hours.
A popular automated alternative is neighbor em-
bedding (Hinton and Roweis, 2002), which can
produce a two-dimensional (2-D) cluster plot that
can be analyzed visually quickly. (This class of
methods is also known as nonlinear dimension-
ality reduction as the 2-D plot is obtained by
preserving the pairwise similarity of the original
high-dimensional structure.) Widely used neighbor
embedding algorithms are t-distributed stochastic
neighbor embedding (t-SNE) (Maaten and Hinton,
2008) and uniform manifold approximation and pro-
jection (UMAP) (McInnes et al., 2018). UMAP was
introduced relatively recently and has become very
popular, as this method has rich algebraic and topo-
logical structure and is computationally fast.

In this paper, we propose a UM AP-based visual an-
alytic method for extracting outlier images from large
x-ray datasets. We validate the framework by ana-
lyzing three publicly available and widely used med-
ical image datasets. We show that the method can
successfully cluster image features and produce inter-
pretable visualization. We also discover labeling er-
rors and erroneous images that have slipped through
the verification process done prior to dissemination.

2. Related Works

In the literature the term outlier is often used in-
terchangably with abnormality and anomaly (Fritsch
et al., 2012). Here, we define outliers as images that
do not have any signal necessary for final decision-
making or do not belong in the dataset due to speci-
fication. Generally, outlier detection methods assume
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Figure 1: Schematic of the outlier search algo-
rithm. Image features extracted from a
DenseNet-121 neural network are projected

onto a 2-D plane using UMAP.

that there is an underlying distribution of data which
is often modeled to be a normal distribution (Hodge
and Austin, 2004). A data point is an outlier if it
is far away from the mean of the fitted distribution.
Fritsch et al. (2012) used the minimum covariance de-
terminant estimator and its extensions to find outliers
(due to motion or registration issues) in neuroimaging
data by analyzing principal components. Gang et al.
(2018) used a t-SNE plot to find outliers from binary
lung masks in terms of size variation and segmen-
tation error. Fleischer and Islam (2020) employed
UMAP on chest x-rays for phenotyping COVID-19
response.

3. Method

Following preprocessing (discussed in Appendix A),
the major parts of the framework are feature ex-
traction and dimensionality reduction (Fig. 1). To
extract features from these images, we employed
DenseNet-121 (Huang et al., 2017) trained on Ima-
geNet (Russakovsky et al., 2015), a widely used deep
learning architecture designed to efficiently propagate
features from earlier layers of a network to deeper lay-
ers. Importantly, neural features are usually robust

to many variabilities in images, and thus can accom-
modate standard images and outliers on equal terms.

Medical images usually vary in resolution, have dif-
ferent contrast, brightness, and alignment, and of-
ten suffer from registration issues. While pre-trained
DenseNet using radiological data is available, we
chose to use ImageNet models so that the network is
not biased by radiologiy-specific data. In our frame-
work, the features have been extracted from the final
layer (before the softmax layer) of the network, where
the features are generally most discriminating. Since
we are not using a radiologically pre-trained model,
these features generally will not be able to identify in-
dividual diseases. Rather, we employ other related la-
bels (e.g., x-ray views and body parts) to examine the
datasets. After extracting the features, we employ
a neighbor embedding algorithm, UMAP (McInnes
et al., 2018), to obtain a 2-D approximation of the
high-dimensional features. Thus, images that are
similar will be placed close to each other after the
embedding.

4. Results

In this section, we describe the datasets and discuss
representative results.

4.1. Data

We evaluate our approach on three publicly avail-
able datasets: ChestX-rayld (Wang et al., 2017),
CheXpert (Irvin et al., 2019), and Musculoskele-
tal Radiographs (MURA) (Rajpurkar et al., 2018).
ChestX-ray14 contains 112,120 frontal chest x-ray im-
ages from 30,805 unique patients. Images are from
posterior-anterior (PA) and anterior-posterios (AP)
views. CheXpert dataset contains 224,316 chest x-
rays (PA, AP, and Lateral) from 65,240 patients. We
used 223,414 JPEG formatted x-rays from the train-
ing set of the dataset. MURA dataset contains 40,561
musculoskeletal x-rays from 14,863 studies. Similar
to CheXpert, we used 36,808 x-rays from the train-
ing set for analysis. Additional details are provided
in Appendix A.

4.2. Experiments
4.2.1. LATERAL X-RAYS IN CHESTX-RAY14

Our 2-D embedding is shown in Fig. 2(a). There are
two large clusters of PA and AP views, correspond-
ing to the primary tolopogy of the DenseNet features.
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Figure 2: Neighbor embedding of the ChestX-
rayl4 dataset. a) 2-D embedding. La-
beled clusters from (a) are: b) Lateral x-
rays which were not supposed to be in the
dataset, c) PA x-rays with borders, d) AP

x-rays with borders, and e) cluster from a
single patient.

The satellite clusters around the larger ones occur be-
cause the nearest neighbor graph creates a loop (or
isolated sub-graph) of common features that are dis-
tinct from the rest of the data (more details in Ap-
pendix A). In most cases, each of the satellite clusters
of x-rays is from a single patient with a unique sig-
nature. However, if any specific image features (such
as similar artifacts in multiple images) are present in
x-rays of different patients, these can create satellite
clusters as well.

Representative examples of anomalous clusters are
shown in Figs. 2 (b)-(e). The most surprising finding
is the existence of some lateral x-rays in the dataset
(Fig. 2 (b)), as this dataset is supposed to be com-
posed of frontal chest x-rays only. We found 92 lateral
x-rays using our method. The images are listed in the
supplement.

Another interesting structure in Fig. 2 (a) is the
protruding region from the AP cluster marked ¢ and
d, consisting of x-rays with dark borders of PA and
AP views, respectively. Finally, cluster (e) shown in
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Figure 3: Neighbor embedding of x-rays from
CheXpert dataset. a) 2-D Embedding.
Example images with b) block artifacts, c)
noise, d) improper dynamic range, e) ver-
tical artifacts, and f) alignment issues.

Noisy

Fig. 2 (e) groups 46 x-rays from patient ID 9845 and
a single x-ray from patient ID 12562.

4.2.2. CORRUPTED IMAGES IN CHEXPERT

The 2-D embedding of CheXpert dataset is shown in
Fig. 3 (a). As before, the large PA and AP clusters
form the bulk of the mapping. The lateral x-rays also
form a separate large cluster. A few of the large satel-
lite clusters (b-e) have been marked by red circles in
Fig. 3 (a). Four images from each of the clusters are
plotted in Fig. 3 (b)-(e). Fig. 3 (b) depicts images
with block artifacts, e.g., from poor JPEG compres-
sion or accidental splicing. We found 107 such images
in this cluster. Fig. 3 (c) depicts images that are just
noise. This cluster contains 19 such images. Fig. 3 (d)
shows four images with dynamic range issues in addi-
tion to block artifacts. The cluster contains 53 such
images. Fig. 3 (e) shows four representative x-rays
with vertical artifacts. A total of 88 such images are
found in this cluster. Finally, Fig. 3 (f) shows are
rotated images. This cluster is placed near the large
cluster of lateral x-rays. Thus, DenseNet considers
rotated x-rays to be more similar to lateral images
than upright frontal X-rays. Additional discussion is
in the Appendix B.

4.2.3. EXTRACTING CHEST X-RAYS FROM MURA

Since the MURA dataset consists of x-rays from dif-
ferent parts of the arm and the shoulder, there is a
natural ambiguity in labels, e.g., both wrist and hand
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Figure 4: Neighbor embedding of ‘finger’ x-
rays from MURA dataset and 100
chest x-rays from CheXpert dataset.
a) Scatterplot of the embedding. The clus-
ter of chest x-rays is marked using a red
rectangle. b) Scatterplot in the red rect-
angle. ¢) two x-rays labeled ‘finger’ are
actually chest x-rays. d) Typical finger x-
rays from the MURA dataset.

C  Chest x-rays in MURA dataset labeled finger

x-rays may contain the hand of a person, and shoul-
der x-rays may contain part of the chest. In such
cases, finding mislabeled x-rays by embedding all the
images may be sub-optimal. To find outliers more
directly, we searched for misclassified images by ex-
plicitly using labels of the dataset. The method has
two parts:

1. Introduce target images with a specific label
(preferably from a different dataset than the
MURA one); and

2. Perform neighbor embedding on the joint
dataset.

For example, to look for possible chest x-rays
falsely classified as finger x-rays in the MURA
dataset, we added 100 chest x-rays from the CheX-
pert dataset to the 5,106 finger x-rays of MURA.
We then applied the UMAP to the composite set
(Fig. 4 (a)). As shown in Figs. 4 (b)-(d), the seeded
chest x-rays acted as an attractor for mislabeled im-
ages in MURA, with x-rays labeled ‘finger’ now ap-
pearing the (new) chest cluster. Interestingly, both
of these x-rays were from patient 04547 (another 3
from this patient were labeled correctly). Another
example, that of leg x-rays mislabeled as “shoulder”,
is shown in Appendix C.

5. Discussion and Future

Neighbor embedding algorithms can be an effective
tool for summarizing datasets and identifying outlier
images. The principle of the method is that the out-
liers are different from the main data but they can
have similarities among themselves. Thus, the out-
liers form distinct clusters in the embeddings. Our
experiments, using a DenseNet-121 feature extrac-
tor and UMAP neighbor embedding method on the
ChestX-ray14, CheXpert, and MURA datasets dis-
tinguished different radiological views of chest x-rays,
classified different, and identified wrongly labeled or
corrupted images. We further found specific types
of outliers by seeding the dataset with target images
and performing neighbor embedding.

One of the major limitations of our approach is
that the embedding quality depends on the quality
of the image features obtained from the neural net-
work. To avoid contamination of features from x-ray
images in the pre-trained models, we used a network
trained on ImageNet. Future work will consider dif-
ferent datasets for the pre-training, including those
designed specifically for biomedical imaging.

It may also help to consider other algorithms,
such as self-supervised and foundation models.
Likewise, other neighbor embedding techniques,
such as TriMAP (Amid and Warmuth, 2019),
PaCMAP (Wang et al., 2021), and combined feature
learning and embedding (Bohm et al., 2023) may be
beneficial. For larger datasets, more accurate resutls
and faster embedding may be achieved by dividing
them into smaller subsets and applying better align-
ment techniques (Islam and Fleischer, 2022). Corre-
lating statistic outlier detection methods (Han et al.,
2022) with the UMAP embeddings for improved ex-
plainability may also be explored.

While this study performed retrospective analy-
sis of large x-ray datasets, outlier curation can be
achieved during the initial assembly of the dataset as
well. For suspected outliers, the method of seeding
data with known labels can be applied. To stream-
line the process, appropriate reference datasets may
be created beforehand. Undoubtedly, cleaner input
data will result in cleaner output data.

Finally, since the methods are graph-based and ag-
nostic to the underlying data type, all of the methods
here can be applied to arbitrary datasets, including
and especially those that are mixed modality.
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Appendix A. Implementation Details

In this section, we provide details of the method, im-
plementation, and datasets.

A.1. Image Pre-processing

We apply the following transformations: histogram
equalization (Woods and Gonzalez, 2008), resizing
the images, center cropping, and normalization. Im-
ages are resized such that the lowest dimension con-
tains 256 pixels and then center-cropped to a 224 x
224 dimensional image for feature extraction. Then
the images are normalized according to the specifi-
cation of Imagenet: mean (0.485, 0.456, 0.406) and
standard deviation (0.229, 0.224, 0.225) of red, green,
and blue channels, respectively.

A.2. Feature Extraction

We use a DenseNet-121 architecture (Huang et al.,
2017) pre-trained on the ImageNet dataset (Rus-
sakovsky et al., 2015) from the PyTorch deep learn-
ing library (Paszke et al., 2017). (DenseNet is a deep
neural network with many inter-layer connections de-
signed to reduce the numerical instabilities that orig-
inate due to the depth of the network. The usage
of neural network outputs as features is an effective
baseline in machine learning algorithms (Sharif Raza-
vian et al., 2014) and is extensively used in medical
image analysis.) Here, we remove the classification
(softmax) layer from the neural network and use the
output of the last layer as the feature set.

Let, f(-;6) be the feature extractor parameterized
by {#}. Then, the feature x obtained from a pre-
processed image I is given by

x = f(I;0) (1)

A.3. Neighbor Embedding

The first step is to characterize the high-dimensional
structure of the feature set X = {x; € R"i =
1,..., N} using a pairwise metric. More specifically,
we create a graph with the adjacency matrix:

pij = fr(ds(xi,%;)[X), (2)

where d(-,-) is the pairwise distance metric and
fu(+) is a function defining the weight of the edge.
Given the set Y = {y; € Ri = 1,..., N} of the
corresponding low-dimensional approximation of the
features X (typically d << n), the graph in the low
dimension is given by the adjacency matrix:

¢ij = fr(dy(yi,y;)Y), (3)

where dy(-,-) is a pairwise distance metric used for
low-dimensional embedding and f1(-) is a function
that provides the weight of the graph edges.
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Finally, the low-dimensional embedding is opti-
mized from an initialization of the set Y by mini-
mizing a loss function,

L= Z Upij 4ij) (4)

A.4. Uniform Manifold Approximation and
Projection (UMAP)

UMAP constructs a high-dimensional graph of the
original dataset by the following system of equations:

Dij = Pilj T Pjli — Pi|jPyi> (5)
wp(4&&§t&> if 2; € KNN(x;, k)
Pl '

otherwise

Y

(6)
(7)

min
x; EKNN(x;,k)

d(Xi,Xj)7

where KNN(x;, k) is the set of k-nearest neighbors of
the point x; and o; is a scaling parameter such that

Zj pilj = logy (k).
The low-dimensional graph is given by a differen-
tiable function

1
~ T+a(lly: - y113)"

(8)

qij

where the parameters a and b determine the density
of the mapping. a and b are chosen by fitting ¢;; to

1
i) = {GXP(—(dij —ma))

if d;; < my
T 9)
otherwise

where d;; = |ly; — y;ll2, and mg regulates the
minimum distance between the two nearest low-
dimensional points. This later parameter ensures
that if the minimum distance between points is small,
then neighboring points come close to each other
forming compact clusters; otherwise, the points are
spread out.

UMAP aims to minimize the following cross-
entropy loss function:

Z ij 1 —pij
L)

i g

(10)

The first term provides an attractive force and the
second term provides a repulsive force. Instead of op-
timizing every point in each iteration, UMAP takes

the negative sampling (Mikolov et al., 2013; Tang
et al., 2016) approach. For each edge with p;; > 0,
named a positive edge, several edges are sampled ran-
domly, named negative edges. The attractive force
is applied on the positive edge, whereas the repulsive
force is applied on the negative edges (McInnes et al.,
2018).

A.5. Data

Here, we describe each of the datasets we used in the
main text.

A.5.1. CHESTX-RAY14

The dataset was initially compiled as a smaller
dataset named ChestX-ray8 (Wang et al., 2017) with
8 abnormality labels. Later the dataset was expanded
with additional images and labels resulting in 112,120
frontal chest x-ray images from 30,805 unique pa-
tients and 14 abnormality labels. The data has two
perspective labels (PA and AP) and 14 abnormality
labels.

A.5.2. CHEXPERT

This dataset was compiled from chest radiographic
studies collected from Stanford Hospital, performed
between October 2002 and July 2017 (Irvin et al.,
2019). The dataset contains 224,316 chest x-rays
from 65,240 patients. We have used only the training
set in our experiment which consists of 223,414 x-ray
images.

A.5.3. MUSCULOSKELETAL RADIOGRAPHS
(MURA)

MURA is a large dataset of musculoskeletal radio-
graphs (Rajpurkar et al., 2018). The dataset contains
40,561 musculoskeletal x-rays from 14,863 studies.
The primary label is ‘normal’ or ‘abnormal’, with the
latter indicating fractures, plates, and screws from
operating procedures, degenerative changes, etc. Sec-
ondary labels are finger, wrist, hand, forearm, elbow,
humerus, and shoulder. Similar to CheXpert, we used
the training set only, which consists of 36,808 sam-
ples.

A.6. Parameter Settings

In general, we kept the number of nearest neighbors &
to be low, as increasing k increases the computational
budget.
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Figure 5: Embedding of CheXpert data using
t-SNE and UMAP. (a) t-SNE with no
exaggeration. (b) t-SNE with exaggeration
factor 4. (¢) UMAP.
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Figure 6: Embedding of MURA dataset.

ChestX-ray14 - Fig. 2: For ChestX-rayl4 we used
k = 50. The minimum distance parameter my was
set to 0.1. We experimented with smaller mg values
to increase the separation of the AP and PA x-rays,
but it had little effect. The embedding was optimized
for 200 epochs.

CheXpert - Fig. 3: The embedding was obtained by
using £ = 10. We used a smaller minimum distance
mg = 0.001, as we found that this value provided a
better separability of the large clusters. We ran the
optimization for 300 epochs.

MURA - Figa. 4, 6, and 8: Similar to CheXpert, we
used k£ = 10, mg = 0.001, and ran the optimization
for 300 epochs.

Appendix B. Comparison with t-SNE
Algorithm

In the main text, we focused on the UMAP algorithm.
Here, we briefly explore t-SNE. The default t-SNE is
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Figure 7: Chest x-rays chosen from CheXpert
dataset to produce the embedding in
Fig 4.

tuned to preserve the neighborhood as best as pos-
sible. This often causes the individual clusters to be
spread out and less compact. The typical t-SNE out-
put is shown in Figure 5 (a). Despite t-SNE being
able to cluster the PA, AP, and lateral x-rays, the
separation among them is minimal and there is little
room for the satellite clusters. However, t-SNE can
be tuned to produce a more UMAP-like output. Fol-
lowing the findings of Linderman and Steinerberger
(2019) and Bohm et al. (2022), we used an exaggera-
tion factor of 4, which means we applied 4 times more
repulsive force than the attractive force. The stan-
dard early exaggeration factor of 12 was also applied
at the start of the optimization. The resulting plot
is shown in Fig. 5 (b). Comparison of the t-SNE plot
to the UMAP plot reveals that most satellite clusters
are absorbed within the larger PA and AP clusters.
Overall, UMAP is superior.

Appendix C. Additional Discussion on
MURA

Fig. 6 shows the embedding of 36,808 musculoskele-
tal radiographs from the MURA dataset. There is
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Figure 8: Neighbor embedding of ‘finger’
and ‘shoulder’ x-rays from MURA
dataset. (a) Scatterplot of the embed-
ding. (b) Chest x-ray and non-x-ray
images were discovered which are labeled
as ‘finger’ x-rays. (c) Leg x-rays labeled as
‘shoulder’ x-rays.

e

Finger
N © Shoulder

decent separation among the x-rays in terms of the
labels, but there is also a considerable overlap. For
example, finger, wrist, and hand x-rays overlap, as
finger x-rays include parts of the wrist and hand,
and vice versa. Similarly, wrist and forearm clusters
are often merged, since x-ray of the forearm tend to
capture a portion of the wrist, and vice versa. The
same happens for humerus and shoulder. The im-
ages within each cluster thus share similar acquisi-
tion views, aspect ratios, and specific features (e.g.,
circular window function, stitching of multiple x-rays
in one image). Unlike ChexPert case, analysis of this
mapping did not reveal any satellite clusters with cor-
rupted images.

Based on this, we decided to focus on individual
labels and extract images with specific labels. The
chest x-rays from the CheXpert dataset used to pro-
duce Fig. 4 are shown in Fig. 7.

C.1. Finding More Mislabeled Images

Here we used ‘finger’ and ‘shoulder’ x-rays to search
for misclassified images (Fig. 8). If shoulder labels
include images that look like ‘finger’, they will be
attracted to the finger clusters, and vice versa.

As expected, the broad features of the finger and
shoulder are easily separable with a few misclassi-
fied points. Analyzing ‘finger’ x-rays misclassified in
‘shoulder’ clusters, we can find the two chest x-rays
labeled as finger (which we found in section 4.2.3 as
well) and two images that are just noise/non-x-ray
images (Fig. 8 (b)). The latter belongs to patient ID

04687, which includes two more outliers. One of the
three is an x-ray of a collection of keys. This anomaly
was not put into a different cluster by the algorithm
but was discovered because of manually checking pa-
tient ID 04687. The misclassified ‘shoulder’ labels in
the ‘finger’ cluster reveal three leg x-rays (Fig. 8 (d)).
These should not be in the MURA dataset.
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